Desorption of water from distinct step types on a curved silver crystal.
نویسندگان
چکیده
We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111) × (100)] via (111) to [5(111) × (110)]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a "two state" desorption model.
منابع مشابه
Lattice Boltzmann Simulation of Nanofluids Natural Convection Heat Transfer in Concentric Annulus (TECHNICAL NOTE)
Abstract This study is applied Lattice Boltzmann Method to investigate the natural convection flow utilizing nanofluids in a concentric annulus. A numerical strategy presents for dealing with curved boundaries of second order accuracy for both velocity and temperature fields. The fluid between the cylinders is a water-based nanofluid containing different types of nanoparticles: copper (Cu), a...
متن کاملAssessment of Turbulent Models in Computation of Strongly Curved Open Channel Flows
Several rigorous turbulent models have been developed in the past years and it can be seen that more research is needed to reach a better understanding of their generality and precision by verifying their applications for distinct hydraulic phenomena; under certain assumptions. This survey evaluates the performance of Standard k-ε, Realizable k-ε, RNG k-ε, k-ω and RSM models in predicting flow ...
متن کاملDesorption Kinetics of Heavy Metals (Lead, Zinc, and Nickel) Coexisted with Phenanthrene from a Natural High Buffering Soil
This work aims to investigate the competitive time-dependent desorption rate of heavy metals (lead, zinc, nickel) coexisting with phenanthrene from natural high buffering soil. Two non-ionic surfactants (Tween 80 and Brij 35) combined with disodium ethylene diamine tetraacetate salt (Na2-EDTA) were utilized as the reagents. The contaminants’ time-dependent desorption data was fitted with five k...
متن کاملA Nano-Composite Based on Fe3O4@Styrene-Maleic Anhydride Copolymer as a Magnetic Sorbent for Preconcentration of Silver(I) Ion
A magnetic nano-composite based on modified styren-maleic anhydride copolymer and Fe3O4 nano-particles was introduced as a new sorbent for solid-phase extraction and preconcentration of trace levels of silver ion from aqueous solutions. The size and morphology of the nano-sorbent were characterized via X-ray diffraction analysis, scanning electron microscopy and Fourier transform infrared spect...
متن کاملCharacterization and Assessment of Antimicrobial Activity and Potential of Heavy Metal ion Detection of Silver Nanoparticles synthesized from Actinidia deliciosa paste using double distilled water and 70% ethanol as solvent
Green synthesis of nanoparticles using plants as sources exhibiting superiority over the physical and chemical methods that are expensive and can involve the use of toxic, hazardous chemicals, which may pose biological and environmental risks. In present study silver nanoparticles were synthesized in single step by biological method using extracts of Actinidia deliciosa paste as reducing and st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 19 8 شماره
صفحات -
تاریخ انتشار 2014